
Designing a Modular Communications Bus for
High Altitude Balloon Missions

Cesar Parent
School of Arts, Media and Games
University of Abertay Dundee

Dundee, DD1 1HG, UK

ABSTRACT

Context: Current high-altitude scientific balloon
missions use single-purpose, custom-made on-board
computer and communications systems, whereas
satellites use modular buses that host custom-made
instruments. Such a bus could lower the cost and com-
plexity of High-Altitude Balloon missions.

Aim: The investigation aims to determine the feasi-
bility of a modular bus to provide data transfer and
radio communications for High-Altitude Balloon mis-
sions. The goal is to design, document and build a
prototype bus that will be used as a platform to test
communications protocols, data bus formats and con-
nection to external payloads. Testing will determine
whether the design is suitably reliable and fast for in-
flight use.

Method: Using Commercial-Off-The-Shelf hard-
ware, a prototype payload bus, its software and its
communication protocols will be designed and built.
Multiple intra-payload communications protocols,
forward-error correction algorithms and radio packet
formats will be tested. Then, full scale hardware-in-
the-loop ground simulations will be run with multiple
test payloads connected to the bus.

Results: The performance and reliability of the bus
will be evaluated by measuring the data and power ef-
ficiency of the prototype, the robustness and flexibility
of its software and by checking that the prototype can
handle full-flight simulations.

Conclusion: The project aims at defining a modu-
lar bus that High Altitude Balloon missions can be
based upon. Provided the prototype passes testing,
the documented protocols and software and hardware
interfaces could allow wider use of High Altitude Bal-
loons for upper-atmosphere research.

KEYWORDS

Radio Communications, Networking, Forward Error
Correction, High-Altitude Balloon, Data Bus, Teleme-
try Systems

1 INTRODUCTION

Nano-satellites have lowered the cost of access to orbit
by allowing light payloads to be launched as secondary
passengers on heavy-lift rocket flights. However, the
cost of the hardware required and the launch itself —
when it is not subsidised by the launch provider or
space agencies — still limit their use to well-funded
universities and companies.

For applications that require low atmospheric den-
sity or medium altitudes, but do not depend on the
payload being in a Low-Earth Orbit, High-Altitude
Balloons (HAB) present an affordable alternative.
Such balloons, inflated with low-density gases (usu-
ally helium or hydrogen), can reach the stratosphere
(altitudes of 30 to 45km). The payload is encased in a
thermally insulated container attached under the bal-
loon itself. Depending on the mission, balloons either
float at a constant altitude and drift for long durations
or climb to the target altitude, then burst under the
pressure of the expanding gas. Once the balloon is
destroyed, the payload is brought back to the ground
under a parachute.

The main component of the payload is the on-board
computer (OBC ), which controls the different instru-
ments through the different phases of flight (ascent,
observation, free-fall and parachute descent). Be-
cause high-altitude winds can reach speeds upwards of
150km/h and carry the payload over long distances,
most balloons carry a Global Navigation Satellite Sys-
tem (GNSS) receiver that the OBC can use to keep
track of the balloon’s position and altitude. To avoid
loosing flight data if the payload is lost or lands in
an unaccessible area, the OBC also controls a ra-
dio transmission system used to forward payload data
and metadata (GNSS coordinates, altitude, systems
health) to a ground station as it is acquired.

Depending on the mission, various instruments are
added to the payload. The OBC is in charge of gather-
ing, storing and transmitting their data to the ground.
Most balloon payloads are designed as custom hard-
ware and software to fit the mission, which means
common systems like GNSS, on-board data transfer
and radio communications are re-implemented every
time.

The satellite industry solves this problem by making
use of buses for most missions. Instead of designing

1



a custom, monolithic platform for each new satellite,
manufacturers sell buses that provide utility (power,
data bus, attitude control and space-to-ground com-
munications) to which the customer or science team
connect mission-specific payloads.

Figure 1: LADEE Spacecraft, based on the
Modular Common Spacecraft Bus (NASA Ames)

Such modular designs allow mission specialists and
scientists to focus on their experiments and payloads,
and help reduce cost by spreading common develop-
ment costs over many missions. Bringing their use to
HAB missions would make high-altitude research ac-
cessible to a wider range of users, by taking away the
computer science and electrical engineering required
to design and build the flight computer and radio
telemetry system.

What are the advantages, issues and obstacles in de-
signing a modular intra-payload and long-range com-
munications platform for High-Altitude Balloon scien-
tific missions? The aim of the proposed investigation
is to design, document, implement and evaluate the
performance of a low-cost, modular platform to pro-
vide data transfer and long-range radio telemetry to
payloads carried on High-Altitude Balloon missions.
The objectives of the proposed project are:

• Evaluate existing platforms and protocols used
for communications between payloads and over
radio in high-altitude balloons and nano-
satellites.

• Evaluate the feasibility of a modular High-
Altitude Balloon bus based on low-cost, open-
source, off-the-shelf hardware.

• Design the required protocols and build a pro-
totype for an open-source high-altitude balloon
flight computer and communication platform.

• Evaluate the power, data throughput and data
loss performance of the prototype through test-
ing.

• Evaluate the robustness, maintainability and ease
of use of the bus’ software compared to that of
single-purpose payload firmwares.

2 BACKGROUND

Most HAB missions led by universities, schools or am-
ateur are built around commercially available small
computers or micro-controller boards: Redland Green
School students used a Raspberry Pi (Raspberry Pi
Foundation 2014) running python scripts as an OBC
for their HAB mission (Hinschelwood et al. 2015),
while other projects have been ran on AVR micro-
controller based boards like the Arduino Mega (Atmel
Corporation 2015).

In the United Kingdom, radio licenses do not cover
airborne transmission, making packet radio proto-
cols like AX.25 unusable for HAB missions (UKHAS
2016). However, the Office of Communications allows
the use of certain license-exempt frequencies like the
70cm wavelength band, provided that the transmis-
sion power does not exceed 10mW (Ofcom 2014). For
this reason, most missions launched from the United
Kingdom use the Radiometrix NTX2 transmitter (Ra-
diometrix Ltd. 2012). Because of the constraints,
these missions usually transmit their telemetry as text
using the Radio-Teletype (RTTY) protocol.

While most HAB projects make use of commercial-
off-the-shelf components, the finished payloads are
usually custom, single-purpose designs that are lit-
tle, if at all modular. In the design document for
the Titan-1 HAB mission, Bombasaro describes a
hardware bus based on tightly coupled sensors which
communicate over two different data buses, SPI and
I2C, and a custom-made, single-purpose flight soft-
ware (Bombasaro 2015).

Because of the risks and cost involved, nano-
satellites rely more on modular designs, allowing each
team to work on their module independently. In his
paper, Volstad describes the design of the data bus
of the NTNU CubeSat: while the OBC is a based on
a custom made circuit board, it is designed to pro-
vide a standard power interface, as well as access to
an I2C standard bus (NXP Semiconductors 2014) to
each payload (Volstad 2011). The I2C protocol was
chosen because of its low power consumption, and
because if only requires two lines (clock and data).
Thomas Clausen describes in his 2001 paper how a
simple packet protocol built on top of I2C itself is
used for data transfer and error detection in Aalborg
University’s CubeSats (Clausen 2001).

Satellite missions last a lot longer than High-
Altitude Balloons’ and the requirements for radio
transmissions differ: while satellites can only commu-
nicate when their orbit passes above a ground station
and require precise speed and data volume planning,
as described by Sandy Anthunes in his book (Antunes
2015), non-floating HAB missions allow for line-of-
sight communications from liftoff to late into the de-
scent of the payload.

There are however some technologies that can be
adapted from satellites to be used in HAB applica-

2



tions. The University of Arizona uses a custom packet
format over 434MHz radio, containing raw binary val-
ues for each instrument’s measurements (Eatchel et al.
2002). The BRITE-Austria CubeSat mission uses the
AX.25 packet radio protocol (used by amateur radio
users), which allows the use of off-the-shelf transmis-
sion and reception hardware rather than custom-made
circuits (Traussnig 2007).

Some nano-satellites use custom telemetry data for-
mat, which allows the team to minimise the volume
of data to be sent over radio. The Planetary Society’s
Lightsail mission has an uplink connection that allows
the ground station to request specific logs or data. By
default, The spacecraft only communicates a custom
beacon containing a summary of the its housekeeping
data (Ridenoure et al. 2016). Uplink being impracti-
cal with the transmission power limits imposed in the
United Kingdom, such a selective telemetry system
cannot be relied upon for HAB missions.

To improve collaboration and allow the deployment
of large networks of satellites, probes and other space
vehicles, the Consultative Committee for Space Data
Systems has defined multiple communication stan-
dards that for the different types of networks encoun-
tered in spacecrafts.

SpaceWire defines how instruments’ data can be ac-
cessed by having the OBC remotely poll their mem-
ory (Parkes and Mcclements 2005). A similar system
is used to fetch data from ROM chips over I2C and
could be used to build a simple data bus.

The CCSDS Space Packet protocol defines a packet
format used to encapsulate application data (from in-
struments for example) that can be sent over a “Space
Link”, an analogue of the OSI model’s link layer
(Stallings 1987) using CCSDS frames to encapsulate
packets originating from multiple instruments, ground
stations and spacecrafts (Consultative Committee for
Space Data Systems 2003).

While HAB applications do not require the level of
complexity of CCSDS protocols — addressing is not
needed since the network only contains two endpoints,
communicating in a single direction — some details of
the Space Packet protocol are worth reusing (Forward
Error Correction, different Application IDs for each
payload).

3 METHOD

The proposed project will consist of three main phases:

1. Design and documentation of the hardware and
software interfaces, and the packet radio protocol
of the payload bus.

2. Implementation of the payload bus design in pro-
totype form (development boards).

3. Testing and evaluation of the prototype bus and
its software architecture.

3.1 Technology
The payload bus prototype will be designed and built
around an ATmega328p micro-controller (Atmel Cor-
poration 2016). An Arduino Uno board will be used
for convenience during development since it allows
flashing firmware onto the micro-controller through
USB (Arduino LLC 2010).

The OBC flight software will be written with the C
programming language (Kernighan and Ritchie 1988)
and the AVR C Library, part of the AVR GNU C
toolchain (Gudger et al. 2016).

3.2 Planned Architecture
The main role of the payload bus will be to gather data
made available by each connected payload, packetise
it along with GNSS metadata and forward it to the
ground station.

To decode the received data on the ground, a mod-
ified version of dl-fldigi (UKHAS and W1HKJ 2016)
will be used to forward binary data to a decoding pro-
gram, which will then decode packets and display each
instrument’s data and metadata either as text, or in
a graphical user interface.

Payload Bus

Flight Software

Data Transfer  
System

Radio Telemetry
System

Navigation
System

Payload 1 Payload 2 Payload 3

Figure 2: Planned payload bus architecture

The OBC flight software will consist of an event loop
running throughout the flight. The major components
of the loop would be:

GNSS tracking The tracking subsystem reads the
GNSS receiver’s output, and updates the last
known position if the output is considered sane.

Payload polling Each payload — or the payload
that have requested to transfer data — is polled
for new available data. The data is transferred to
the OBC.

Packaging The data from each payload is put into
packets, and the latest GNSS data is inserted into
each packet’s headers.

Radio transmission The new data packets are
added to the radio transmission queue and sent
when the link is available.

3



At this time, two main issues are anticipated with
this architecture:

• A payload generating large amounts of data could
hold the bus for long periods of time, thus block-
ing other payloads. This could be mitigated us-
ing time or volume limits and a priority system
— higher priority payloads would be given more
time or data.

• Given the limited data rate that can be achieved
over low-power radio links, a large number of pay-
loads could produce data at a higher rate that
could be sent to the ground station. Here again
a data volume limit could prevent congestion.

3.3 Testing
The testing phase will aim to determine whether the
bus prototype is reliable and fast enough to be used on
High-Altitude Mission. Testing will be done in an in-
cremental fashion: each module of the bus (hardware,
flight software, radio link) will be tested individually
at first, before systems are integrated together and
larger-scale tests can be ran — up to full flight sim-
ulations can be done on the ground. The areas that
will be tested are:

Throughput the maximum data throughput
achieved by the radio link and the data bus.

Speed the average duration between the time a pay-
load’s data is available and the time it is sent to
the radio transmitter.

Reliability The data loss ratio of the radio link and
the data bus.

Power The current drawn by the OBC and the data
bus depending on the number of payloads con-
nected.

Since realistic radio ranges (40-200km) would be
inconvenient to reproduce during ground testing, dis-
tance will be simulated by attenuating the radio signal
artificially (different antennae). The performance of
the bus will be determined by comparing the measure-
ments against published numbers of previous HAB
missions.

3.4 Risk Management
The main risks for the project that were identified
are loss of project data, hardware failures and mal-
functions, inaccurate time estimations and unforeseen
health or external issues.

Loss of data will be mitigated by the use of regular
and redundant local and on-line backups of the project
data.

Hardware failure is the main risk: the electronic
components used to build the prototype could dam-
aged by simple errors in wiring or operations. This
will be mitigated by the availability of spare develop-
ment boards and careful handling of rare components.

To mitigate the impact of time estimation and
health issues, the project will follow a three step pro-
cess: In the worst-case scenario, achieving only the
first step would still provide an acceptable minimal
product. If the project runs well, the second and third
steps will yield better, more complete results.

1. The radio packet format and the data bus’ pro-
tocol are designed, and can be run in a simulated
flight software (in-software) environment.

2. The flight software is complete and can drive a
hardware payload bus and radio transmitter.

3. The payload bus prototype is complete and drives
multiple test payloads, hardware-in-the-loop full
mission tests can be run.

4 SUMMARY

High-Altitude Balloons are used to provide affordable
access to near-space conditions to scientific experi-
ments and teaching efforts, but still require signifi-
cant engineering and computing knowledge to design.
If successful, the proposed project would bring con-
cepts used to reduce the cost and complexity of satel-
lite operations by providing a modular interface to a
standard payload bus. This would allow students and
scientists not familiar with the problems of embedded
programming and radio-communications to focus on
their scientific payloads, thus reducing the barrier of
entry to High-Altitude research and education.

REFERENCES

Antunes, S. (2015). DIY comms and control for am-
ateur space : talking and listening to your satellite.
1st. San Francisco: Maker Media. isbn: 1680450476.

Arduino LLC (2010). Arduino - Arduino Uno R3.
url: https : / / www . arduino . cc / en / Main /
ArduinoBoardUno (visited on 09/21/2016).

Atmel Corporation (2015). Sensing the atmosphere
with an Arduino-based high-altitude balloon. url:
http : / / blog . atmel . com / 2015 / 09 / 11 /
sensing-the-atmosphere-with-an-arduino-
based - high - altitude - balloon/ (visited on
10/30/2016).

– (2016). ATmega328/P Datasheet. url: atmel.com.
Bombasaro, E. (2015). Titan 1 design and mission
documentation. In:

Clausen, T. B. (2001). The Cubesat Internal bus: The
I2C. Aalborg.

Consultative Committee for Space Data Systems
(2003). Space Packet Protocol. Washington, DC.

4

https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Main/ArduinoBoardUno
http://blog.atmel.com/2015/09/11/sensing-the-atmosphere-with-an-arduino-based-high-altitude-balloon/
http://blog.atmel.com/2015/09/11/sensing-the-atmosphere-with-an-arduino-based-high-altitude-balloon/
http://blog.atmel.com/2015/09/11/sensing-the-atmosphere-with-an-arduino-based-high-altitude-balloon/
atmel.com


Eatchel, A. L. et al. (2002). Development of a Base-
line Telemetry System for the CubeSat Program at
the University of Arizona. In: International Teleme-
tering Conference Proceedings. Tucson, AZ: Interna-
tional Foundation for Telemetering.

Gudger, K. et al. (2016). AVR-GCC Toolchain. url:
http://www.nongnu.org/avr-libc/.

Hinschelwood, J. et al. (2015). A Raspberry Pi
Weather Balloon. In: Young Scientists Journal 17,
pp. 20–24.

Kernighan, B. W. and Ritchie, D. M. (1988). The
C programming language. Prentice Hall. isbn:
9780131103627.

NXP Semiconductors (2014). UM10204 - I2C-bus
specification and user manual Rev. 6.

Ofcom (2014). IR 2030 - UK Interface Requirements
2030 Licence Exempt Short Range Devices. London.

Parkes, S. and Mcclements, C. (2005). SpaceWire Re-
mote Memory Access Protocol. In: DASIA 2005-
Data Systems in Aerospace. Vol. 602. European
Space Agency, pp. 18.1–18.9.

Radiometrix Ltd. (2012). NTX2/NRX2 Data Sheet.
Harrow. url: http://www.radiometrix.com/
files/additional/ntx2nrx2.pdf.

Raspberry Pi Foundation (2014). Raspberry Pi 1
Model A+. url: https://www.raspberrypi.org/
products/model-a-plus/.

Ridenoure, R. W. et al. (2016). Testing The LightSail
Program: Advancing Solar Sailing Technology Using
a CubeSat Platform. In: Journal of Small Satellites
5.2, pp. 531–550.

Stallings, W. (1987). Handbook of computer-
communications standards. Macmillan. isbn:
002948071X.

Traussnig, W. (2007). Design of a Communication and
Navigation Subsystem for a CubeSat Mission. Graz.

UKHAS (2016). UKHAS - Frequently Asked Ques-
tions. url: https://ukhas.org.uk/guides:
faq?s[]=license.

UKHAS and W1HKJ (2016). dl-fldigi. url: https:
//ukhas.org.uk/projects:dl-fldigi.

Volstad, M. L. (2011). Internal Data Bus of a Small
Student Satellite. Ålesund.

5

http://www.nongnu.org/avr-libc/
http://www.radiometrix.com/files/additional/ntx2nrx2.pdf
http://www.radiometrix.com/files/additional/ntx2nrx2.pdf
https://www.raspberrypi.org/products/model-a-plus/
https://www.raspberrypi.org/products/model-a-plus/
https://ukhas.org.uk/guides:faq?s[]=license
https://ukhas.org.uk/guides:faq?s[]=license
https://ukhas.org.uk/projects:dl-fldigi
https://ukhas.org.uk/projects:dl-fldigi

	INTRODUCTION
	BACKGROUND
	METHOD
	Technology
	Planned Architecture
	Testing
	Risk Management

	SUMMARY

